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bstract

This paper reports a Hammerstein modeling study of a proton exchange membrane fuel cell (PEMFC) stack using least squares support
ector machines (LS-SVM). PEMFC is a complex nonlinear, multi-input and multi-output (MIMO) system that is hard to model by traditional
ethodologies. Due to the generalization performance of LS-SVM being independent of the dimensionality of the input data and the particularly

imple structure of the Hammerstein model, a MIMO SVM-ARX (linear autoregression model with exogenous input) Hammerstein model is used
o represent the PEMFC stack in this paper. The linear model parameters and the static nonlinearity can be obtained simultaneously by solving a set
f linear equations followed by the singular value decomposition (SVD). The simulation tests demonstrate the obtained SVM-ARX Hammerstein
odel can efficiently approximate the dynamic behavior of a PEMFC stack. Furthermore, based on the proposed SVM-ARX Hammerstein model,

alid control strategy studies such as predictive control, robust control can be developed.
2007 Elsevier B.V. All rights reserved.
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. Introduction

A fuel cell is an electrochemical device that converts the chemical energy of reactants (fuel and oxidant) directly into electricity
nergy. Water and heat are the only byproducts if hydrogen is used as the fuel source. The challenges of limited storage and adverse
nvironmental impacts of conventional fossil fuels have raised interest and investigation in the fuel cell research. The proton exchange
embrane fuel cell (PEMFC) is the focus of current efforts for its higher power density and faster start-up than other fuel cells [1].
n important tool in the fuel cell development is mathematical modeling. The results obtained from a reliable and effective model

an be very useful to guide future research for fuel cell improvements and optimization. At the same time, the effective control of
he PEMFC system also depends on the accurate mathematical model to simulate and predict its behavior under various operating
onditions.

It is difficult to model the PEMFC system using traditional methods because of its nonlinear multi-input and multi-output (MIMO)
ynamics. Over the last several decades, many researchers all over the world have made great progress on the PEMFC modeling.
ost of the developed models distinctly describe internal microscopic characteristics, such as gaseous diffusion, thermal conduction,

nd liquid water transportation [2–4]. These models are very useful for cell design, but they are too complicated to be used in the
esign and analysis of a control system.
To meet the demands of developing valid control strategies, some researchers have attempted to establish novel fuel cell models
y the statistical data-driven approach. The artificial neural network (ANN) was used to derive a solid oxide fuel cell (SOFC) model
rom the experimental data [5]. The direct methanol fuel cell (DMFC) voltage responses to cell current step changes are investigated
ith transfer function analysis in Ref. [6]. Jurado [7] identified a SISO model of SOFC using the nonlinear autoregressive exogenous
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Nomenclature

A denominator of the ARX
Acell active area of single cell (cm2)
As cooling channel surface (m2)
b parametric coefficient (V)
B numerator of the ARX
cO2 concentration of oxygen at the catalyst interface (mol cm−3)
cP,CL Equivalent specific heat of cooling water (J(kg K)−1)
cP,FC equivalent specific heat of overall fuel cell (J(kg K)−1)
e uncorrelated random error
ENernst Nernst potential (V)
F Faraday’s constant (96,485 C mol−1)
Fin,a inlet molar flow rate of anode (kmol s−1)
Fin,c inlet molar flow rate of compressor (kmol s−1)
FO2 oxygen molar flow rate consumed by fuel cell (kmol s−1)
Fvalve,c outlet molar flow rate of cathode exit valve (kmol s−1)
�G change in the free Gibbs energy (J mol−1)
hFC internal convection coefficient (W(m2 K)−1)
�H change of the enthalpy (J mol−1)
i [O2, N2, vapor]
I fuel cell current (A)
j [H2, vapor]
J current density (mA cm−2)
Jmax maximum current density (mA cm−2)
kcath cathode valve constant ((kmol kg)1/2(atm s)−1)
kFC natural convection coefficient (W K−1)
Ki valve molar constant of i species (kmol(s atm)−1)
m, n order of the numerator and denominator in the transfer function of the ARX
mCL cooling water flow rate (kg s−1)
MFC overall fuel cell mass (kg)
Mi molar mass of i species (kg kmol−1)
ni molar number of i species (kmol)
nu, ny number of the input/output variables of model
N number of sample data
Ncell number of cells in a stack
Pcath, Pan pressure in the cathode or anode (atm)
Pi,c, Pj,a partial pressure of i or j species in the cathode or anode (atm)
Psat,c partial pressure of vapor with 100% relative humidity in the cathode (atm)
Qloss dissipated heat per cell
R gas constant (8.314 J mol−1 K−1)
Rc resistance to election flow (�)
Rm resistance to proton flow (�)
�S change of the entropy (J mol−1)
StoiO2 oxygen gas stoichiometry
T1, T2 inlet/exit temperature of cooling water (K)
Tamb environmental temperature (K)
Tref reference temperature (K)
Tstack fuel cell stack temperature (K)
u input vector of the PEMFC stack
Vcath volume of the cathode (m3)
Vcell average voltage of cells in a stack (V)
Xi,c molar fraction of i species in the cathode
y output vector of the PEMFC stack
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Greek letters
α, β Lagrange multipliers
δ kernel width
γ regularization parameter
ηact activation overvoltage (V)
ηcon concentration overpotential (V)
ηohmic ohmic overvoltage (V)
τi time constant of i species (s)
ξ parametric coefficients based on experimental data (s = 1, . . ., 4)
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NARX) approach. A nonlinear fuzzy model of a molten carbonate fuel cell (MCFC) stack was built with an identification method [8].
ost of them require the use of linearization techniques before executing the control strategies. As the complexity of the identified
odels increases, the variance on the obtained model parameters will increase as well.
The Hammerstein model [9,10] is a special kind of nonlinear systems where the nonlinear block is static and is followed by a

ynamic linear system. Due to its particularly simple structure, Hammerstein system has been extensively studied in the context
f system identification. Fuzzy Hammerstein models of a SOFC have been introduced in Refs. [11,12], and the parameters in the
inear system and fuzzy system were ascertained separately. The least squares support vector machines (LS-SVM) [13,14] used
or classification in various domains of pattern recognition, lately has handled regression problems successfully. Compared to the
ther modeling method, LS-SVM possesses prominent advantages: its generalization performance (i.e. error rates on test sets) either
atches or is significantly better than that of competing methods, and more importantly, the performance does not depend on the

imensionality of the input data. The SVM has been used to develop the steady-state models (I–V characteristics) of the PEMFC
nd SOFC system [15,16].

In this paper, a SVM-ARX Hammerstein model is built to describe the dynamic characteristics of a PEMFC stack. The LS-SVM
ith a radial basis function (RBF) kernel is used for the representation of the static nonlinear block in the Hammerstein model.
he dynamic linear part is realized by the linear autoregression model with exogenous input (ARX). The dynamic physical model
f a 3 kW PEMFC stack provides the data used to identify the MIMO Hammerstein model. The linear model parameters and the
tatic nonlinearity can be acquired simultaneously by solving a set of linear equations followed by the singular value decomposition
SVD).

The paper is organized as follows. In Section 2, the dynamic physical model of the PEMFC stack is presented. Section 3 develops
he MIMO Hammerstein model using the LS-SVM approach. The modeling of the PEMFC stack based on the MIMO Hammerstein

odel is discussed in Section 4. Finally, conclusions are stated in Section 5.

. PEMFC stack dynamic physical model

The basic fuel cell system structure with three main loops (the oxygen loop, the hydrogen loop, and the thermal loop) is shown

n Fig. 1.

Fig. 1. Basic PEMFC system structure.
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.1. Steady-state electrochemical model

The steady-state electrochemical model can be used to predict fuel cell voltage output. The basic expression for the cell voltage
an be defined by [17–19]:

Vcell = ENernst − ηact − ηohmic − ηcon (1)

The Nernst potential VNernst represents the fuel cell open circuit voltage. This is given by:

ENernst = �G

2F
+ �S

2F
(Tstack − Tref) + RTstack

2F
(ln(PH2,a) + 0.5 ln(PO2,c)) (2)

Using the standard pressure and temperature (SPT) value for �G, �S and Tref, Eq. (2) can be simplified to [18,19]:

ENernst = 1.229 − 0.85 × 10−3(Tstack − 298.15) + 4.3085 × 10−5Tstack × (ln(PH2,a) + 0.5 ln(PO2,c)) (3)

The activation overpotential ηact, which takes into account both the anode and the cathode overpotential [18] can be calculated
y:

ηact = −[ξ1 + ξ2Tstack + ξ3Tstack ln(cO2 ) + ξ4Tstack ln(I)] (4)

cO2 = PO2,c

5.08 × 106 exp(498/Tstack)
(5)

The ohmic overpotential results from the resistance to the electron transfer in the collecting plates and carbon electrodes, and the
esistance to the proton transfer in the solid membrane. This can be represented using Ohm’s law as [18]:

ηohmic = I(Rc + RM) (6)

The concentration overpotential ηcon due to the mass transport can be determined by [17,18]:

ηcon = −b ln

(
1 − J

Jmax

)
(7)

As the cells are serially connected, the stack output voltage will be the summation of all the single cell output voltages. The cell
oltage Vcell can be assumed to be the arithmetic average of cell voltages for a healthy stack.

.2. Cathode and anode dynamic models

The following equations describe the variations of the gaseous species concentrations in the cathode compartment considering
00% humid gases [20–22]. The balance of oxygen and nitrogen allows us to write the following set of equations [20]:

dnO2

dt
= 0.21Fin,c − FO2 − XO2,cFvalve,c (8)

dnN2

dt
= 0.79Fin,c − XN2,cFvalve,c (9)

dnvap

dt
= Psat,c

Pcath − Psat,c
Fin,c − Xvap,cFvalve,c = Xvap,c

1 − Xvap,c
Fin,c − Xvap,cFvalve,c (10)

here:

FO2 = Ncell × I

4/F

XO2,c = PO2,c

Pcath

X = PN2,c

N2,c Pcath

Xvap,c = Psat,c(Tstack)

Pcath
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The ideal gas law is used to calculate the pressure in the cathode:

Pcath = RTstack

Vcath
(nO2 + nN2 + nvap) (11)

The partial pressure of oxygen gas is:

PO2,c = RTstack

Vcath
nO2 (12)

Considering that the molar flow of any gas through the valve is proportional to its partial pressure, the following equation is
erived:

Xi,cFvalve,c

Pi,c
= kcath√

Mi

= Ki (13)

Replacing nO2 and XO2,cFvalve,c in (8) by (12) and (13) respectively, taking the Laplace transform of both sides of (8) and isolating
he oxygen partial pressure, yields the following expression:

PO2,c = 1/KO2

1 + τO2s
(0.21Fin,c − krI) (14)

here:

τO2 = Vcath

KO2RTstack

kr == Ncell × I

4/F
.

The partial pressure of pure hydrogen gas with 100% relative humidity in the anode has the same derivation process as the oxygen
artial pressure in the cathode. This is defined by:

PH2,a = 1/KH2

1 + τH2s
(Fin,a − 2krI) (15)

.3. Thermal model

The energy losses lead to a heat production. The heat is dissipated in the regions where the respective losses occur and is then
vacuated from the cell through conduction to the bipolar plates and from there through convection to the ambient air and cooling
iquid. The conduction phenomena within the plate are ignored when the stack can be treated as a lumped capacitance model and a
onstant bipolar plate temperature can be assumed [23].

Applying a basic energy balance for the bipolar plate allows us to express the evolution of the fuel cell temperature as [24]:

dTstack

dt
= 1

MFC × cP,FC

⎡
⎢⎣ Qloss︸ ︷︷ ︸

Energy loss

+ mCL × cP,CL(T1 − T2)︸ ︷︷ ︸
Forced internal convection

− kFC × (Tstack − Tamb)︸ ︷︷ ︸
Natural convection

⎤
⎥⎦ (16)

The internal heat source is generally composed of the entropy loss due to the electrical chemical reaction in both of the catalyst
ayers, the chemical energy required for oxygen and protons to overcome the barrier of the overpotentials and the latent heat of water
ondensation or evaporation [25,26]. The water phase-change heat transfer can be represented by the product of the latent heat of
vaporation/condensation and the mass transfer rate [26]. The volume of the condensed/vaporized water is very small and the water
hase-change enthalpy is negligible if compared with others [24,27,28]. The dissipated heat per cell can be written as:

Qloss =
(

−�H

2F
− Vcell

)
× I =

(
−�H

2F
− ENernst

)
× I︸ ︷︷ ︸

Entropy loss

+ (ηact + ηohmic + ηcon) × I︸ ︷︷ ︸
Overpotential loss

(17)

The exit temperature T2 of cooling water is determined by the heat transferred to the cooling liquid along the cooling channels.
escribing the heat transfer through forced internal convection, this can be expressed as [24]:
T2 = Tstack − (Tstack − T1) exp

(
− As × hFC

mCL × cP,CL

)
(18)

The equivalent average convection coefficient hFC can be determined through experimental Nusselt number correlations [29].
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Fig. 2. Hammerstein system structure.

. Nonlinear MIMO Hammerstein model

Hammerstein systems, in their most basic form, consist of a static memoryless nonlinearity, followed by a linear dynamical
ystem as shown in Fig. 2. We will present some basic aspects of LS-SVM applied to static function estimation, the basic form of
he MIMO SVM-ARX Hammerstein model and a method for the identification of the model in this section [30].

.1. LS-SVM for function approximation

Assume a set of given input/output training data is given:

{(ut, yt)}Nt=1 ⊂ Rd × R,

he regression model is defined as:

yt = f (ut) + et, f : Rd → R, E[et] = 0, E[e2
t ] = σ2

e < ∞,

here u1, . . ., uN are deterministic points, f is an unknown real-valued smooth function and e1, . . ., eN are uncorrelated random
rrors.

In order to estimate the nonlinear f using the LS-SVM [13], the following model is constructed:

f (u) = ωTϕ(u) + d, ϕ : Rd → RnH, nH → ∞, (19)

here ϕ denotes a potentially infinite dimensional feature map. The quadratic loss function is selected in LS-SVM. The optimization
roblem of LS-SVM is formulated as:

min
w,d,e

ζ(w, e) = 1

2
wTw + γ

2

N∑
t=1

e2
t

s.t. yt = ωTϕ(ut) + d + et, t = 1, . . . , N.

(20)

In order to solve the constrained optimization problem, a Lagrangian is constructed as:

L(w, d, e; α) = ζ(w, e) −
N∑

t=1

αt(ω
Tϕ(ut) + d + et − yt), αt ∈ R (21)

here αt (t = 1, . . ., N) are the Lagrange multipliers. The conditions for optimality are given as:

∂L

∂w
= 0 → w =

N∑
t=1

αtϕ(ut), (22)

∂L

∂d
= 0 →

N∑
t=1

αt = 0, t = 1, . . . , N, (23)

∂L

∂et

= 0 → αt = γet, (24)

∂L

∂αt

= 0 → yt = ωTϕ(ut) + d + et, t = 1, . . . , N, (25)
Substituting (22)–(24) into (25) yields the following set of linear equations:[
0 1T

N

1N Ω + γ−11N

][
d

α

]
=
[

0

y

]
(26)
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here:

y = [y1, . . . , yN ]T ∈ RN,

1N = [1, . . . , 1]T ∈ RN,

α = [α1, . . . , αN ]T ∈ RN,

Ωi,j = K(ui, uj) = ϕ(ui, )Tϕ(uj), ∀i, j = 1, . . . , N

The resulting LS-SVM model for function estimation can be evaluated at a new point u* as:

ŷ = f̂ (u∗) =
N∑

t=1

αtK(ut, u∗) + d (27)

here (d, α) is the solution to (26).
The positive definite kernel function K is any symmetric function that satisfies Mercer’s condition. For the choice of the kernel

see Ref. [31]. The RBF kernel function is used in this study because it tends to give good performance under general smoothness
ssumptions. The RBF kernel function is defined as:

K(ui, uj) = exp

(
−||ui − uj||22

δ2

)
(28)

.2. Basic form of MIMO Hammerstein model

For the linear dynamical part, we will assume a model structure of the MIMO ARX form [30]:

yt =
n∑

i=1

Aiyt−i +
m∑

j=0

Bjf (ut−j) + et (29)

here,

yt, et ∈ Rny, ut ∈ Rnu, Ai ∈ Rny×ny , Bj ∈ Rny×nu

t = 1, . . . , N, i = 1, . . . , n, j = 0, . . . , m

f : Rnu → Rnu : u → f (u) = [f1(u) . . . fnu (u)]T .

The so-called equation error et is assumed to be white. We have for every row s in (29), that

yt(s) =
n∑

i=1

Ai(s, :)yt−i +
m∑

j=0

Bj(s, :)f (ut−j) + et(s), s = 1, . . . , ny (30)

ubstituting f (u) = [f1(u) . . . fnu (u)]T in (30) leads to:

yt(s) =
n∑

i=1

Ai(s, :)yt−i +
m∑

j=0

nu∑
k=1

Bj(s, k)fk(ut−j) + et(s) (31)

In order to apply LS-SVM function estimation, we replace
∑nu

k=1Bj(s, k)fk(ut−j) in (31) by wT
j,sϕ(ut−j) + ds,j , this reduces to:

yt(s) =
n∑

i=1

Ai(s, :)yt−i +
m∑

j=0

wT
j,sϕ(ut−j) + ds + et(s), ∀t, s (32)
ds =
m∑

j=0

ds,j
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The parametric component A of the linear dynamical system is naturally included in the LS-SVM framework. The optimization
roblem of LS-SVM is formulated as [30]:

min
w,A,B,d,e

ζ(wj,s, e) =
m∑

j=0

ny∑
s=1

1

2
wT

j,swj,s + γs

2

ny∑
s=1

N∑
t=r

es(s)
2, (33)

r = max(m, n) + 1,

ubject to (32) and
∑N

t=1w
T
j,sϕ(ut) = 0.

In order to solve the constrained optimization problem, a Lagrangian is constructed as:

L(wj,s, ds, A, e; α, β) = ζ(wj,s, e) −
N∑

t=r

ny∑
s=1

αt,s

⎛
⎝ n∑

i

Ai(s, :)yt−i +
m∑

j=0

wT
j,sϕ(ut−j) + ds + et(s) − yt(s)

⎞
⎠

−
m∑

j=0

ny∑
s=1

βj,s

(
N∑

t=1

wT
j,sϕ(ut)

)
(34)

The conditions for optimality are given by:

∂L

∂wj,s

= 0;
∂L

∂Ai(s, :)
= 0;

∂L

∂ds

= 0;
∂L

∂et(s)
= 0;

∂L

∂αt,s

= 0;
∂L

∂βj,s

= 0. (35)

.3. Identification of MIMO Hammerstein model

The aim of Hammerstein identification is to model the nonlinearity and to estimate the model parameters of the linear system
rom input/output measurements.

Given system (32), the LS-SVM estimates for the outputs at a new input u* are given as:

ŷt(s) =
n∑

i=1

Ai(s, :)ŷt−i +
m∑

j=0

wT
j,sϕ(u∗) + ds, t ≥ r, s = 1, . . . , ny, (36)

wT
j,sϕ(u∗) =

N∑
t=r

αt,sK(ut−j, u∗) + βj,s

N∑
t=1

K(ut, u∗) (37)

here

at,s, t = r, . . . , N, s = 1, . . . , ny,

βj,s, j = 0, . . . , m, s = 1, . . . , ny,

Ai, i = 1, . . . , n,

ds, s = 1, . . . , ny.

These four parameters are obtained from the following set of linear equations [30]:⎡
⎢⎢⎣

L1

. . .

Lny

⎤
⎥⎥⎦
⎡
⎢⎢⎣

X1

...

Xny

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

R1

...

Rny

⎤
⎥⎥⎦ (38)

here: ⎡
0 0 1T

N−r+1 0
⎤

Ls =
⎢⎢⎢⎣ 0 0 yp 0

1N−r+1 yT
p k + γ−1

s I S

0 0 ST T

⎥⎥⎥⎦
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Xs =

⎡
⎢⎢⎢⎣

ds

As

ᾱs

β̄s

⎤
⎥⎥⎥⎦ , yp =

⎡
⎢⎢⎢⎢⎣

yr−1 yr · · · yN−1

yr−2 yr−1 · · · yN−2

...
...

...
...

yr−n yr−n+1 · · · yN−n

⎤
⎥⎥⎥⎥⎦

Rs =
[

0 0 yT
f,s 0

]T
, yT

f,s = [yr(s)T . . . yN (s)T
]T

As = [A1(s, :)T . . . An(s, :)T
]T

ᾱs = [αr,s · · · αN,s

]T
, β̄s = [β0,s . . . αm,s

]T

Ωp,q = ϕ(up)Tϕ(uq), k(p, q) =
m∑

j=0

Ωp+r−j−1,q+r−j−1

T = 1T
NΩ1N1m+1, S(p, q) =

N∑
t=1

Ωt,r+p−q

It is recommended to set γ1 = γ2 = · · · = γny. This will reduce the number of parameters to be tuned and speed up the estimation
lgorithm since L1 = L1 = · · · = Lny needs to be calculated only once.

Estimates for the autoregressive matrices Ai, i = 1, . . ., n are directly obtained from (38). For the training input sequence [u1, . . .,
N], we have⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0(1, :)
...

Bm(1, :)
...

B0(ny, :)
...

Bm(ny, :)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡
⎢⎢⎢⎣

f̂
-

T
(u1)
...

f̂
-

T
(uN )

⎤
⎥⎥⎥⎦

T

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

β0,1

...

βm,1

...

β0,ny

...

βm,ny

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N∑
t=1

⎡
⎢⎢⎣

Ωt,1

...

Ωt,N

⎤
⎥⎥⎦

T

+

⎡
⎢⎢⎣

A1

...

Any

⎤
⎥⎥⎦×

⎡
⎢⎢⎢⎢⎣

ΩN,1 ΩN,2 · · · ΩN,N

ΩN−1,1 ΩN−1,1 · · · ΩN−1,N

...
...

...

Ωr−m,1 Ωr−m,2 · · · Ωr−m,N

⎤
⎥⎥⎥⎥⎦ , (39)

here

Am =

⎡
⎢⎢⎢⎢⎣

αN,m · · · αr,m

αN,m · · · αr,m

. . .
. . .

αN,m · · · αr,m

⎤
⎥⎥⎥⎥⎦ , m = 1, . . . , ny,

ith f̂
-

(u) an estimate for

f
-

(u) = f (u) − g (40)

nd g a constant vector such that:

m∑
Bjg = [d1· · ·dny ]T (41)
j=0

stimates for f
-

and the Bj,, j = 0, . . ., m, can be obtained through a rank-nu approximation of the right-hand side of (39), for instance
sing a singular value decomposition [32]. From f

-
in (40) and g in (41), finally, an estimate for the nonlinear function f can be

btained.
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Table 1
Model parameters

Parameter Value

Ncell 28
Acell (cm2) 400
KH2 (kmol(s atm)−1) 4.22 × 10−5

τH2 (s) 3.37
KO2 (kmol(s atm)−1) 2.11 × 10−5

τO2 (s) 6.74
kFC (W K−1) 0.7
J (mA cm−2) 260–580
StoiO2 1.2–2.5
MFC (kg) 8.8
cP,FC (J(kg K)−1) 920
cP,CL (J(kg K)−1) 4180
hFC (W(m2 K)−1) 3990
As (cm2) 820
m
T

w

t

4

t
i
P

m
t
d
P

fl
u

H
i

4

d

4

s
m
c
u
c
p

CL (kg s−1) 0.01–0.03

1 (K) 323.15

Mean squared error (MSE) is employed here to evaluate modeling results:

MSE = 1

N

N∑
t=1

(ŷt − yt)
2 (42)

here ŷt is the predictive output of the Hammerstein model and yt is the output of the real PEMFC stack.
Now the dynamic and static parts of MIMO Hammerstein model have been identified. The model will be adopted to represent

he dynamic nonlinear characteristics of the PEMFC stack based on simulation data.

. Results on the modeling of the PEMFC stack

The modeling of the PEMFC stack based on the Hammerstein model is developed in this section. In this modeling procedure,
he relationship between inputs and outputs of the PEMFC stack can be emphasized while the sophisticated inner structure is
gnored. The output voltage of the PEMFC stack depends on many operation parameters such as: current I, oxygen partial pressure
O2,c, hydrogen partial pressure PH2,a, and stack temperature Tstack with the assumption that channel gas is fully saturated and
embrane is fully humidified. In engineering application, hydrogen flow rate Fin,a must be tuned according to |Pcath − Pan| in order

o minimize the pressure difference between the cathode and the anode and protect the membrane against cracking. PH2,a actually
epends on Fin,c by a simple feedforward control. Based on above description, the voltage of the PEMFC stack can be controlled by
O2,c and Tstack through two manipulated variables: the oxygen gas stoichiometry StoiO2 = (0.21Fin,c)/FO2 , and the cooling liquid
ow rate mCL. The current I is considered as a system disturbance. Consequently, the PEMFC stack is modeled with three inputs
= [I, StoiO2 , mCL]T and two outputs y = [PO2,c, Tstack]T.
The duty of modeling the PEMFC stack is to set up the relations between input vector u and output vector y based on the

ammerstein model using a set of sample data {ut, yt}, t = 1, . . ., N. In the following, the training process of the Hammerstein model
s presented firstly, and then the model are utilized to predict outputs of the PEMFC stack.

.1. Training the Hammerstein model

In general, steps used in training the Hammerstein model based on LS-SVM include: choosing and preprocessing experimental
ata, and selecting the optimal SVM-ARX Hammerstein model parameters.

.1.1. Preparing the training data set
In our study, a 3 kW PEMFC stack is considered to the prototype of this modeling. The dynamic physical model of the PEMFC

tack is built up according to Section 2 using MATLAB to generate the data set required for the identification of the Hammerstein
odel. Pure hydrogen and air are used as the fuels for the anode and the cathode respectively. The configuration and operating
onditions of this stack are shown in Table 1. For the purpose of identification, the dynamic physical model was excited with
niformly random input signals including the current density (260–580 mA cm−2), the oxygen gas stoichiometry (1.2–2.5) and the
ooling liquid flow (0.01–0.03 kg s−1). The fourth-order Runge-Kutta method was used to find the numerical solution to the dynamic
hysical model in the simulation.
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The stack temperature usually needs more than 500 s to achieve steady state and oxygen partial pressure just needs less than
50 s according to the same inputs. In order to reduce the sample data and acquire an adequately short online predicting time, the
oxygen partial pressure and the stack temperature are sampled using different time intervals under the conditions of keeping a certain
prediction precision. A set of 1000 training data are collected for PO2,c and Tstack respectively from the simulation excited with the
same input series. The first 900 data are used to identify the static nonlinearity and the transfer function of the linear system, while
the remaining 100 data are used for validation purposes.

All chosen training data are normalized to [0,1] by (43) which can accelerate the training speed.

u′
t(v) = ut(v) − umin(v)

umax(v) − umin(v)
,

t = 1, . . . , N

v = I, StoiO2 , mCL
(43)

4.1.2. Selection of the optimal model parameters
The key to obtaining a highly accurate MIMO Hammerstein model is to choose a proper parameter set. There are four parameters

in this modeling process needing to be tuned: γ in Eq. (33), which determines the trade-off between minimizing training errors and
minimizing model complexity; δ in Eqs. (28) and (37), which directly influences the number of initial eigenvalues/eigenvectors and
the fitting level of the static model; m and n in Eq. (29), both of which decide the dynamic performance of the identified Hammerstein
model. As a general rule, a slight overestimation of m and n is, as in the linear case, not a problem [30].

We firstly tune γ and δ with fixed m and n, and then adjust m and n with the fixed γ and δ found in the former step. We can rapidly
tune the four parameters using the 10-fold cross-validation method [15,16], which is often used in practical applications. The final
optimal parameters are: γ = 50, δ = 0.5, m = 4 and n = 8.

4.2. Predicting with the Hammerstein models

The linear system (38) is solved for d, A, α, and β. An SVD of the right hand side of (39) is thereafter performed to obtain
estimates for the linear system B and the static nonlinearity f as shown in Fig. 3. This identified model can be used to predict the
dynamic characteristics of the PEMFC stack by Eq. (36). The MSE obtained in test process of PO2 and Tstack with maximum values
of 1 atm and 372 K is 0.0002035 and 0.1201 respectively. Off-line optimizing of the Hammerstein model took 23 min on a Pentium
IV 3.0 GHz computer with 1 GB RAM, but the predicting time was no more than 0.2 s.

Nine hundred data of {f, u} is used to develop the inverse of the static nonlinearity in the Hammerstein model [9,33] using
LS-SVM with f as inputs, u as outputs, m = 0 and n = 0. The MSE of 100 test data of {I, StoiO2 , and mCL} with maximum values of
232 A, 2.5 and 0.03 kg s−1 is 0.5032, 2.0493e−4, and 4.7205e−8 respectively.

Ten continuous random input signals are fed into the dynamically physical model and the identified Hammerstein model. The
sample data of input signals and the data obtained by the inverse of the nonlinearity are displayed in Fig. 4. The comparison between
predicted and experimental dynamic output curves of PO2 is given in Figs. 5 and 6 presents the predicted and experimental dynamic
outputs of Tstack. Figs. 5 and 6 show high fitting accuracy of the SVM-Hammerstin model for the dynamic behavior of the PEMFC
stack.

In order to observe the predicting precision when using different sample intervals to these two output variables, the predicted
voltage outputs and experimental voltage outputs are shown in Fig. 7. The stack temperature keeps invariable in its sample interval.

Fig. 3. Outputs of the nonlinearity for 900 training data.
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Fig. 4. Ten continuous random inputs and the data from inverse system.

Fig. 5. Dynamic outputs of oxygen partial pressure.

Fig. 6. Dynamic outputs of stack temperature.
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Fig. 7. Dynamic outputs of stack voltage.

T
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H
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Fig. 8. Output errors of stack voltage.

he voltage error is shown in Fig. 8. The MSE of the PEMFC stack voltage with the maximum value of 23 V is 0.0012 which
uarantees a good predicting performance of the Hammerstein model.

. Conclusions

To facilitate valid control strategy design and analysis, a MIMO Hammerstein model of a PEMFC stack is built up using LS-
VM in this paper. The identification of the static nonlinearity and dynamic linear model parameters is achieved at the same

ime by solving a set of linear equations followed by the singular value decomposition, which ensures the parametric consistency
nd the accurate description of the model. The identified MIMO Hammerstein model of PEMFC is more attractive in that it
voids using complicated differential equations to describe the dynamic characteristics of a PEMFC stack. The linear part of the
ammerstein model can be utilized directly to search optimal operating variables by control strategies. In order to implement the

ontrol scheme, we have presented a good representation of the inverse of the nonlinearity part in the Hammerstein model. In the
uture, some control scheme studies such as predictive control and robust control can be developed based on the Hammerstein

odel.
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